
Excerpt from: Björn Hartmann, Gaining Design Insight Through Interaction Prototyping Tools.
Ph.D. Dissertation, Stanford University Computer Science Department, September 2009.

CHAPTER 2 BACKGROUND:

PROTOTYPES IN THE DESIGN PROCESS

This dissertation proposes novel tools for the prototyping of user interfaces as part of a larger

user interface design process. Doing so successfully requires understanding underlying

principles and practices of design. This chapter presents a brief review of different models of

design and the role prototypes play in the process.

2.1 DESIGN, DEFINED

User interface design is informed and influenced by professional design disciplines such as

product design on one side and by software engineering on the other side. This section

provides a brief overview of the history of professional design and introduces some

established models of the design process to motivate the development of design-specific tools.

2.1.1 WHAT DO WE MEAN BY DESIGN?

Herbert Simon provided a very broad definition of design as “devising courses of action aimed

at changing current situations into preferred ones” [34]. Countless competing definitions

exist. Common to many definitions is the focus on a specific process, with the goal of creating

plans or models for the creation of new artifacts, which have to fit potentially conflicting sets of

constraints, requirements, and preferences. To elaborate on these three core characteristics:

1) Design is a process and has structure — there is a set of core activities designers engage

in, regardless of the domain of design.

2) Design is not manufacturing — for physical artifacts, the final realization is done by

someone else. For software, the division between design and implementation may be less

clear. In both domains, the end product of design is often a specification that will be

interpreted and implemented by someone else.

3) Design has a client and users — it is accountable to external judgment. Different

stakeholders may have conflicting expectations.

Design is thus distinguishable as a unique discipline from art (creation which is accountable

to the vision of the artist); engineering (“the application of scientific and mathematical

2

principles to practical ends” [1]); and science (the development of generalizable knowledge

through observation, experimentation and hypothesis testing).

A more pragmatic characterization would be that design is what professional designers do. The field

of design research adopts this perspective and describes the practices of successful

practitioners to analyze what makes these practices effective. Cross [8], a prominent design

researcher, argues that design has a “unique way of knowing” and distills four core abilities

exercised by professional practitioners:

1) resolving ill-defined problems

2) adopting solution-focused cognitive strategies

3) employing abductive or appositional thinking

4) using non-verbal modeling media

In ill-defined or “wicked” [31] problems, the problem formulation itself is not clear at the outset

and remains to be defined. Because the problem statement itself is not fixed, it is not possible

to enumerate all possible options or to find an optimal solution. Simon argued that design

problems therefore cannot be solved by optimizing, they can only be satisficed [34] — one can

tell an adequate solution from an inadequate one, and make relative judgments of fit, but no

global optimum exists.

Designers adopt solution-focused strategies by generating possible solutions first, then

checking to what extent the generated ideas are adequate for the problem. Cross, reporting on

a study of designers, summarizes: “Instead of generating abstract relationships and attributes,

then deriving the appropriate object to be considered, the [designers] always generated a

design element and then determined its qualities.” [8:100]. Creation comes before analysis,

and only through the creation of prototypes and other representations is it possible to test to

what extent a design idea fulfills the design goals.

This tendency to produce proposals first is an expression of abductive reasoning which, in

contrast to deductive or inductive thinking, starts with concrete observations and guesses,

which only later lead to theories about a design space. Making the right guesses or creative

leaps requires experience.

Finally, designers tend think with, and communicate through artifacts and models rather

than written language – sketches, diagrams, models and prototypes are used both to work

through problems as well as to anchor communication with design team members and other

stakeholders [8:28].

3

2.1.2 A SHORT HISTORY OF PROFESSIONAL DESIGN

Architecture has the claim to being the oldest design discipline. Its focus is on the holistic

creation of structures that simultaneously satisfy requirements of functionality, economy, and

aesthetics. Notably the architect is not the one who creates the building itself: her role is to

transform needs, requirements, and constraints into a suitable plan that can then executed by

a builder. Professional product design as a discipline emerged as a result of the shift from one-off

artifacts created by craftspersons to mass production after the industrial revolution. While

craftsmen would iterate from project to project and slowly evolve a product over time, mass

production yielded many identical copies [24,36]. Because making changes to the tooling for

mass manufacturing became more expensive, while marginal cost of production decreased,

more care and planning was needed before manufacturing commenced to ensure that the

manufactured product was in fact functional and desirable to consumers. Notable pioneers of

product design in the first half of the 20th century include Henry Dreyfuss, Raymond Loewy,

Walter Dorwin Teague, and Norman Bel Geddes. Their autobiographies offer detailed

accounts of the mid-century industrial design process in North America [10,24,36].

Product design as a methodology has since been assimilated by the software industry.

One of the formative academic works that advocated for this transfer of process was

Winograd’s “Bringing Design to Software” [37]. As software is ultimately used by people, its

user interfaces should be created with the same concern for utility, usability, and satisfaction

as other artifacts of daily life.

2.1.3 HOW DO DESIGNERS WORK? MODELS OF THE DESIGN PROCESS

How do the underlying principles of designerly knowledge introduced in section 2.1.1 find

expression in designers’ work practices? The process that evolved from architecture and

product design is characterized by four core strategies: need finding through user research

methods to establish constraints, ideation to generate many possible ideas and subsequently

select promising ideas, prototyping to create concrete models and approximations based on

those ideas, and iterative refinement based on testing generated prototypes. A more detailed

model of this iterative process, as described by Moggridge [26], is shown in Figure 2.1.

Need finding involves learning about the target users of a new product — what are their

unmet needs and unresolved pains; what are their motivations? Needs, requirements, and

constraints may be expressed in narrative form, e.g., as personas and scenarios [7:p. 123]; or

more formally, e.g., as user and task models [13]. The data gathered from such user research is

4

then used to construct a concrete point of view or framing that encapsulates the goals a new

design seeks to achieve. Given a framing, designers generate a multitude of concrete

proposals. Initially, idea generation can take the shape of brainstorming or sketching of

alternatives. To move from graphical envisioning towards concrete, testable artifacts,

designers next generate concrete prototypes. These proposals are then compared an evaluated

— against each other, or against user or stakeholder feedback. The gained knowledge is then

used to drive the next iteration.

The process model described above is commonly observed, but by no means canonical. A

wide-ranging overview of different design methodologies can be found in Jones [19]. Jones

categorizes these methods and distills an important common thread: design is a sequence of

divergent steps, where ideas are produced; and convergent steps, where ideas are eliminated.

Buxton echoes this theme, writing that design alternates between concept generation and

concept selection [3].

2.2 UNDERSTANDING PROTOTYPES

The prior section established that prototyping is a core activity in design across different

domains. This section reviews some conceptions of prototypes in design and computer

science and summarizes the literature on the purpose, role, and place of prototypes.

Figure 2.1: Design process stages according to Moggridge
[189]. Diagram redrawn by the author.

5

2.2.1 PROTOTYPES, DEFINED

The notion of a prototype is overloaded and there is no generally agreed upon definition. As a

broad, inclusive definition, Moggridge regards a prototype as “a representation of a design,

made before the final solution exists.” [26]. Houde and Hill similarly point to the purpose of

prototypes as indicators of a future reality, and distinguish between two functions —

exploration and demonstration [16]. Buchenau and Suri add a third function of prototypes as

tools for gaining empathy: “[A]n Experience Prototype is any kind of representation, in any

medium, that is designed to understand, explore or communicate what it might be like to

engage with the product, space or system we are designing” [2]. Lim and Stolterman

foreground the role of prototypes as learning vehicles: “Prototypes are the means by which

designers organically and evolutionarily learn, discover, generate, and refine designs.” [23]

The above definitions place very little restrictions on the medium of the prototype or the

attributes of a design it tries to represent. In the software engineering literature, prototypes

are often defined more narrowly as working models, created in the same software medium as

the final deliverable. Lichter writes that “Prototyping involves producing early working

versions (‘prototypes’) of the future application system and experimenting with them” [22].

Connell and Schafer explicitly distinguish software prototypes from — in their view

insufficient — other modeling media: “A software prototype is a dynamic visual model

providing a communication tool for customer and developer that is far more effective than

either narrative prose or static visual models for portraying functionality.” (quoted in [28])

In contrast to the software engineering focus on producing functional software, Rettig

[29] and Wong [38] advocate that user interface prototypes should not be constructed in

software in early project stages. Both argue for low-fidelity paper-based prototypes. To better

understand this multitude of viewpoints, this section summarizes prior publications about

prototypes and prototyping in design in general, and within HCI and software engineering in

particular.

2.2.2 BENEFITS OF PROTOTYPING

Are there concrete, measurable, defensible benefits of using a prototyping-driven design

approach, as opposed to a more linear approach, e.g., the waterfall model? This section reviews

experimental and theoretical arguments for the benefit of prototyping.

6

2.2.2.1 Quantifying the Value of Prototyping

The ideal experimental result in favor of prototyping would be that prototyping leads to

better design outcomes. However, operationalizing design quality in experimental settings is

difficult and isolating the impact of prototyping has proven to be problematic for real-world

design tasks. The most concrete result to date is reported by Dow et al. [9] who found that for

a constrained experimental design task with a time limit and a concretely measurable

outcome, participants who built early prototypes and iterated outperformed those who did

not prototype. Dow’s experimental task was the mechanical engineering egg-drop exercise —

participants are asked to create a vessel that protects a raw egg from a vertical fall and

subsequent impact, using a limited set of everyday materials. In a between-subjects design,

the treatment group, which had to build a testable prototype early and was forced to iterate

on that prototype, outperformed the control group, in which prototyping was not

encouraged. In particular, novices unfamiliar with the task who prototyped performed as well

as experts who did not prototype.

In the absence of other strong experimental results, a frequently cited benefit by

proponents is that prototyping leads to earlier identification of problems and blind alleys,

when it is still feasible to fix them. McConnell summarizes several studies that have shown

that for software defects, the cost of finding an error increases by an order of magnitude for

each product phase [25:29], and it appears reasonable to extrapolate similar costs to usability

and user experience problems.

2.2.2.2 Cognitive Benefits of Prototyping

Research in Cognitive Science suggests that the construction of concrete artifacts —

prototyping — can be an important cognitive strategy to successfully reason about a design

problem and its solution space. This section presents some arguments for the cognitive

benefits of prototyping.

ARGUMENT 1: WE KNOW MORE THAN WE CAN TELL.

Embodied cognition theory argues that thought (mind) and action (body) are deeply

integrated and co-produce learning and reasoning [4,5,6]. In this view, “thinking through

doing” — engaging with ideas on a tangible level — is a more successful strategy for design

than thinking hard about the problem alone. Why might this be the case?

Polanyi argues that much of our expertise and skill are “action-centered” and as such not

available to explicit, symbolic cognition. Polanyi introduced the term tacit knowledge to

7

describe such expertise. A well-known example is the problem of describing to someone else

how to ride a bicycle. Riding a bike is an action-centered skill, one gained through repeated

practice and one only accessible as an action in the context of sitting on a bike. Practicing

designers such as Moggridge [26] argue that much knowledge in design is tacit and that

designers therefore need to create concrete artifacts to express their tacit knowledge [27].

ARGUMENT 2: COGNITIVE ACTIVITY EXTENDS INTO OUR ENVIRONMENT.

Proponents of distributed cognition argue that what is cognitive extends beyond the individual

and encompasses the environment, artifacts and other people [15,17]. Hutchins describes in

detailed case studies how people solve hard problems by offloading tasks into appropriate

artifacts in their environment. For example, medieval navigation was aided by the Astrolabe;

airline navigation is a task distributed between pilot, co-pilot, and instruments.

In this view, designers need concrete artifacts such as prototypes to be more effective in

their reasoning. Along the same lines, Hutchins also argues that “material anchors” help

stabilize conceptual knowledge [18]: “Reasoning processes require stable representations of

constraints. [...][T]he association of conceptual structure with material structure can

stabilize conceptual representation.”

ARGUMENT 3: ACTIONS IN THE WORLD CAN OUTPERFORM MENTAL OPERATIONS

Kirsh and Maglio introduced a distinction between pragmatic and epistemic actions [21]:

pragmatic actions are those that advance us toward a known goal; epistemic actions in

contrast uncover more information about the goal. Kirsh and Maglio showed, through a study

of Tetris players, that external actions in the world can be faster or more efficient than mental

operations. Their study measured the amount of piece rotations performed by novice and

expert Tetris players, and found that experts rotated their pieces more frequently. Why?

Because the cost of performing the rotation in the game and then visually comparing the

shape of the piece with the shape of open gaps on the board was faster than mentally rotating

and checking for fit. Similar results have been found for the game of Scrabble, where expert

players rearrange their set of letters to help them reason about possible words that can be

formed with that set. Constructing concrete prototypes could thus be faster than trying to

reason about a design problem in the abstract.

2.2.2.3 Reflective Practice: The Value of Surprise

Schoen introduced the concept of reflective practice to describe designers’ activity during

visualization and prototyping [33]. Reflective practice is the repeated framing and evaluation

8

of a design challenge by working it through, rather than thinking it through. For Schoen,

successful product and architectural designs result from a series of “conversations with

materials.” Here, the “conversations” are interactions between the designer and the design

medium — sketching on paper, shaping clay, building with foam core. The production of

concrete prototypes provides the crucial element of surprise, unexpected realizations that the

designer could not have arrived at without producing a concrete manifestation of her ideas.

Schoen terms this element of surprise “backtalk”. The backtalk that artifacts provide helps

uncover problems or generate suggestions for new designs.

2.2.2.4 Prototyping as a Teaching Technique

Prototyping has also been considered teaching technique that seeks to instill better design

intuitions over time [20]. By continually forcing designers to be faced with the consequences

of their actions through prototype testing, they are held accountable for their ideas. Designers

thus develop a better sense for which ideas work and which do not.

2.2.3 THE PURPOSE OF PROTOTYPING — DESIGN PERSPECTIVES

What questions do prototypes answer? When and how should they be constructed? This

section summarizes arguments from product design and human-computer interaction

research. The subsequent section will present contrasting arguments from software

engineering.

2.2.3.1 What Do Prototypes Prototype?

Houde and Hill [16] classified ways in which prototypes can be valuable to designers.

Prototypes in their view include “any representation of a design idea, regardless of medium.”

Their model defines three types of questions a prototype can address: the role of a product in

the larger use context; its look and feel; and its technical implementation. These questions are set

up as end points in a triangular, barycentric coordinate design space into which prototypes

are plotted (Figure 2.2).

9

Role refers to questions about the function that an artifact serves in a user’s life—the way

in which it is useful to them. Look and feel is concerned with questions about the concrete

sensory experience of using an artifact—what the user looks at, feels and hears while using it.

Implementation refers to algorithms and engineering techniques used to realize functionality

of a product — “the ‘nuts and bolts’ of how it actually works.”

For reasons of economy, any given prototype will only address some of these aspects, or

prioritize some over others. For example, a video clip that shows a “commercial” of an

envisioned product in use would prioritize its role (Figure 2.2–1); a screen mockup of a new

graphics application showing menus and toolboxes would prioritize look and feel (Figure

2.2–2); while a demonstration of algorithms required for that graphics application would

prioritize implementation. Prototypes that strive to strike a balance and address all three

questions are labeled “integration prototypes” (Figure 2.2–3). Such prototypes most closely

approximate the final design and permit testing of the overall user experience, but are also

most resource intensive to construct.

2.2.3.2 Experience Prototyping

Buchenau and Suri [2] introduced the term “Experience Prototyping” to refer to prototyping

activity that enables stakeholders to gain first-hand experiential understanding of either

design problems or of proposed solutions. An example of such a prototype given by the

authors is wearing gloves while operating a consumer electronics device to experience the

reduced dexterity of older adults. Experience prototypes focus on direct active bodily

involvement of the designer or client in a constructed situation. Three uses for experience

prototyping are described: understanding existing use; exploring future situations; and

communicating designs to others.

Figure 2.2: The Houde & Hill model distinguishes Role,
Implementation, and Look and Feel functions of prototypes.

10

To understand existing situations that call for better design solutions, experience

prototyping may involve role playing to gain empathy for target users. As an example, the

authors cite the redesign of a remote control interface for an underwater camera vehicle. The

existing experience was prototyped by one designer “playing” the vehicle with a shoulder

mounted camera, and another designer yelling commands (“move up”) and watching the

video feed on a television monitor.

To explore future situations, Buchenau and Suri advocate creating multiple concrete

artifacts or repurposing found artifacts and everyday objects. Designers on the project team

have enough shared context to interpret these objects as stand-ins for future artifacts. For

example, a pebble might be used to suggest a handheld wireless controller. However, if

exploration requires input from external users, experience prototypes may have to be more

specific and functional, as end users don’t share the same background or conceptual

framework with the team.

When communicating design solutions to clients and other external parties through

prototypes, the intent is frequently to persuade. Such prototypes are often polished and

complete and can take on the role of a “living specification.” The authors caution that

prototypes that succeed in conveying a complete experience can easily be mistaken to be a

complete product.

2.2.3.3 Inspiration, Evolution, Validation

In personal communication, Hans-Christoph Haenlein, Director of Prototyping at IDEO, the

prominent Bay Area design consultancy, described a company-internal three stage view of

prototyping (Figure 2.3) [14]. In the beginning of a project, many parallel prototypes are

Figure 2.3: The IDEO three-stage model of prototyping: as
a design project progresses, the number of entertained ideas
decreases, and prototypes turn from inspiration tools to
validation tools. Diagram redrawn by the author.

11

generated to get inspiration. Here, prototypes are often very dissimilar from each other to

explore fundamentally different design options. Later on, a smaller number of ideas are

iteratively evolved to resolve more focused design questions. Through both phases, project

specifications are derived from the prototypes. Towards the end of a project, very complete

prototypes are built to validate the design specification as a whole. Haenlein also makes an

explicit distinction between prototypes used internally by the design team for exploration,

and prototypes created for communicating design insights to external clients and other

stakeholders.

Buxton [3] draws a distinction between sketches and prototypes. For him, sketches are

“quick, timely, inexpensive, disposable, plentiful”; “they suggest and explore rather than

confirm”. Prototypes in contrast are “didactic, they describe refine, answer, test, resolve; they

are specific and are depictions” [3:140]. While the distinction in nomenclature is unique to

Buxton, the expressed difference between prototypes used for inspiration and those used for

experimentation, evolution and validation matches the IDEO model.

2.2.3.4 Prototyping as Inquiry

Gedenryd stresses that prototypes are “inquiring materials”, that is, materials with a cognitive

purpose [12]. Many prototyping approaches all share the underlying goal to envision the

future situation of the designed artifact in use — prototyping is thus a “situating strategy”.

Echoing distinctions drawn by Haenlein and Buxton, Gedenryd distinguishes between

exploratory prototypes used to familiarize oneself with the problem, and experimental

prototypes, which probe and test specific design hypotheses. He further distinguishes

between horizontal relevance (breadth) and vertical relevance (depth) of the functionality

explored in a prototype.

As a guideline, Gedenryd advocates that prototypes exhibit a minimalist approach:

“A good prototype serves its purpose as a basis of inquiry and interactive cognition, while

being simple to create. This means that it should have the properties required for its purpose,

and as few other properties as possible. It also means that relevance is always relative to just

what exactly a prototype will be used for; this determines what properties it will need to

have.” [12:165]

2.2.3.5 Low-Fidelity Prototypes Might Be Preferable

Rettig [29] and Wong [38] argue that the resolution or fidelity of a user interface prototype

should match the level of detail of the questions asked of the prototype. In particular, Rettig

12

advocates against building functional software prototypes of user interfaces early on because

their surface finish is too high at a time when the general resolution of the project is still low.

According to Rettig, building functional UI prototypes (“high-fidelity prototypes”) early on

squanders design resources and yields the wrong kind of feedback. Particularly, Rettig cites

four problems:

1) High-fidelity prototypes take too long to construct and modify.

2) Testers of the prototype are lead to comment on surface attributes such as typography

and alignment, when those are not the attributes tested.

3) The act of constructing a high-fidelity prototype creates emotional investment by

developers in that prototype, which results in resistance to act on feedback that asks for

fundamental changes. Similarly, a high-fidelity prototype creates expectations by users

exposed to the prototype that may be hard to change later.

4) High-fidelity prototypes are too brittle and have no graceful “repair strategies” if users

run into bugs.

As an alternative, Rettig proposes paper prototyping of user interfaces, where interfaces are

assembled out of different layers of cut out paper strips. A designer simulates the logic of the

application by rearranging paper strips. Wong is also concerned with the fidelity of UI

prototypes and suggests taking inspiration from graphic design by creating “rough” UI

prototypes through sketching and omission of concrete details.

One fundamental shortcoming of paper-based UI prototyping is that the human

“computer” who rearranges UI elements fundamentally changes the experience of interface

dynamics. While useful for exploring questions of interface layout, content, and structure,

paper prototypes are therefore less useful for exploring interactive behaviors in user

interfaces.

2.2.4 THE PURPOSE OF PROTOTYPING —

SOFTWARE ENGINEERING PERSPECTIVES

This section summarizes publications on prototyping from outside the field of human-

computer interaction and product design. Not surprisingly, software engineering prototypes

are more frequently concerned with testing implementation strategies than user experience.

However, the software engineering literature also departs from human-computer interaction

publications on prototyping in additional ways: prototypes are frequently seen as early

version of the final software, rather than standalone artifacts to be discarded after testing. In

13

addition, more emphasis is placed on capturing and documenting what questions a prototype

explored, and what was learned from it.

2.2.4.1 Exploration, Experimentation, Evolution

Floyd [11], in an early workshop on prototyping for complex software systems, describes two

primary goals of prototypes: 1) functioning as “learning vehicles” and 2) enhancing

communication between developers and users, as developer introspection of user needs often

leads to inadequate products.

For Floyd, a software prototype must be functional enough to be demonstrated to users

with “authentic, non-trivial tasks.” That functionality may either be implemented, or

simulated. In either case, Floyd assumes that for complex software projects, resource

constraints only permit one such prototype to be built and tested at a time. Floyd also claims

that by demonstrating a prototype to users, their expectations of the final system are “deeply

influenced” so that the designer is committed to the overall outline of the prototype. This

places the designer in a paradoxical situation: prototypes are constructed to learn, but their

very construction constrains the extent to act on what was learned by modifying the design.

This paradox may have been an artifact of the types of applications considered — custom

software written for individual clients, so that the prototype testers and final users are

identical.

Three different purposes of prototyping are distinguished by Floyd (Table 2.1): exploration

(clarifying requirements, discussing alternatives), experimentation (measuring how adequate a

proposed solution is), and evolution (adapting an existing system to changing requirements).

Floyd suggests that prototypes should be expanded into the target system or integrated into

it — that is, the prototype is an earlier version of the final product. This implies using similar

production tools for the prototype as for the final deliverable and thinking about modularity,

both of which may require more time and expertise than the “quick and dirty” prototypes

Approach Purpose Topic of Investigation
Explorative Elicit requirements, determine scope and

different alternatives of computer support
Requirements

Experimental Try out technical solutions to meet
requirements

Particular solutions

Evolutionary Continually adapt a system to a rapidly
changing environment.

Evolving requirements

Table 2.1: Three purposes of prototypes according to Floyd [79] (table redrawn from
Schneider’s summary [220].)

14

advocated by designers, which are created with the expectation of being discarded.

2.2.4.2 Prototypes as Immature Products

Riddle [30] states that “prototyping is an approach to software development that emphasizes

the preparation of immature versions that can be used as the basis for assessment of ideas and

decisions.” Riddle identifies two “dimensions of immaturity” along which a prototype may fall

short of complete software: a prototype may offer less than a final, polished system in terms of

quality (response time, maintainability, robustness), or in terms of functionality. While

prototypes should be produced quickly, Riddle also stresses that a rational, controlled

approach to prototype development is needed to preserve modifiability and understandability

of the produced code, which suggests that the implementation of the prototype should be

integrated into the main production codebase to some degree. Finally, since prototypes are

constructed for assessment, Riddle argues that tools should also provide ways to instrument

prototypes to gather pertinent usage data automatically.

2.2.4.3 Presentation Prototypes, Breadboards, and Pilot Systems

Lichter et al. [22] present case studies of prototype use in industrial software development

and introduce a taxonomy that distinguishes kinds of prototypes, goals of prototypes, and

prototype construction techniques. Four different kinds of prototypes are distinguished,

based on the phase of software development they support:

1) A presentation prototype is used as a persuasive tool to convince a client of the feasibility of

a project before starting major work on it. Other authors also describe prototypes as

persuasive tools, but usually as the outcome of some design process, not its precursor.

2) A prototype proper is a “provisional operational software system” that is limited to specific

parts of the user interface or implementation.

3) A breadboard is designed to clarify implementation problems for the development team

and does not usually involve end-user feedback.

4) A pilot system is any software not constructed specifically for experimentation or

communication, but part of the core project being developed (e.g., an alpha version).

The purposes of prototyping are adapted from Floyd (exploratory, experimental, and

evolutionary). Construction techniques are distinguished based on whether functional

coverage is horizontal across application layers (e.g., user interface only, database only) or

vertical (e.g., implementing all aspects touched by the shopping cart in an ecommerce

15

system). Lichter et al.’s review of five real-world case studies showed little consistency in the

selection of prototyping strategies in the surveyed companies.

2.2.4.4 Capturing and Sharing Knowledge Gained from Prototypes

Schneider [32], in investigating the role of prototypes in software engineering, lamented that

frequently, no systematic effort is made to capture and share the knowledge gained from

developing and testing prototypes. Because prototypes only examine particular details of a

future product, they often cannot stand alone and require their developers’ explanation to

clarify context and scope: “The prototype itself is not well suited to indicate what it does well

or poorly”. Schneider therefore argues that the right level of analysis is the “developer-

prototype system” since only the two together can fully capture intent and meaning.

Documentation for each prototype should thus be systematically captured through design

tools.

2.2.5 SYNTHESIS OF THE SURVEYED MATERIAL

Given the previous review of both human-computer interaction and software engineering

literature on prototyping, we can now combine the various presented perspectives in to a

single framework that addresses purpose, aspects, and functionality of user interface

prototypes. For this dissertation, we will define a user interface prototype as a concrete artifact

that can be experienced by a user as if it possessed some or all of the interactive qualities of the envisioned

interface, constructed for the purpose of generating feedback.

Three high-level goals why designers prototype have been presented (Figure 2.4): First,

Figure 2.4: Why are prototypes constructed in design?

16

prototypes are built to give the designer experiential insight into some situation that already

exists [2]. Second, prototyping is a technique to gain information about possible future

situations [12]. As described by Floyd [11] and Haenlein [14], this stage of prototyping can

have three different goals: to explore the space of alternatives, to conduct more focused

experiments comparing two or more options, and to get real-world validation. Third,

prototypes are used to aid communication between different project stakeholders with

different “languages.” Within a design team, experts with different realms of expertise use

prototypes to serve as boundary objects [35] that can bridge language differences and serve as

a common referent in discussion. For communication with clients, prototypes are frequently

constructed to persuade the client.

Three different aspects of a final product can be tested in a prototype (Figure 2.5), as

described in Houde & Hill [16]: The role a current or future product plays for a users; the look

and feel of the product, and its implementation strategies. Within the category of look and

feel, designers further distinguish between “looks like” prototypes that express the aesthetic,

Figure 2.5: What aspects of a product can prototypes
approximate?

Figure 2.6: What kind of functionality can prototypes

17

visual, and material qualities of a product, and “works like” prototypes that exhibit

interactive behaviors.

Works-like prototypes can either exhibit full functionality, or limit functionality by

selecting a horizontal or vertical slice of behavior (Figure 2.6). The functionality in a works-

like prototype may or may not share implementation strategies and tools with the final

product. Thus, four different realization methods are possible: building a working

implementation with the same toolset as the final product; building a working

implementation with a different toolset specifically geared towards prototyping; creating a

lower-fidelity approximation; or simulating the functionality.

The prototyping tools in this dissertation support the creation of a specific subset of

prototypes (shown through shading in Figure 2.4–Figure 2.6). The introduced tools focus on

prototypes created to explore design options or test specific ideas through experiments; these

prototypes have working interactive behaviors, but are not necessarily comprehensive and are

expressed in a new, prototype-specific tool, rather than in production-ready code.

With this particular point-of-view established, we next review related prior research

into authoring techniques and systems.

18

REFERENCES
1. The American Heritage Dictionary of the English Language. Houghton Mifflin Company, 2000.
2. Buchenau, M. and Suri, J.F. Experience prototyping. Proceedings of the 3rd conference on

Designing interactive systems: processes, practices, methods, and techniques, ACM (2000), 424-433.
3. Buxton, B. Sketching User Experiences: Getting the Design Right and the Right Design. Morgan

Kaufmann, 2007.
4. Clark, A. Being There. MIT Press, 1997.
5. Clark, A. Supersizing the Mind. Oxford University Press US, 2008.
6. Clark, A. and Chalmers, D. The Extended Mind. Analysis 58, 1 (1998), 7-19.
7. Cooper, A. The Inmates Are Running the Asylum. Sams Publishing, 1999.
8. Cross, N. Designerly Ways of Knowing. Birkhäuser Basel, 2007.
9. Dow, S., Heddleston, K., and Klemmer, S.R. The Efficacy of Prototyping Under Time

Constraints. Proceedings of Creativity & Cognition 2009, ACM (2009).
10. Dreyfuss, H. Designing for people. Simon and Schuster, 1955.
11. Floyd, C. A Systematic Look at Prototyping. In Budde, ed., Approaches to Prototyping.

Springer Verlag, 1984, 105-122.
12. Gedenryd, H. How Designers Work. Lund University, 1998.
13. Hackos, J.T. and Redish, J.C. User and Task Analysis for Interface Design. Wiley, 1998.
14. Haenlein, H. Personal Communication. 2007.
15. Hollan, J., Hutchins, E., and Kirsh, D. Distributed cognition: toward a new foundation for

human-computer interaction research. ACM Trans. Comput.-Hum. Interact. 7, 2 (2000), 174-
196.

16. Houde, S. and Hill, C. What do Prototypes Prototype? In M. Helander, T.K. Landauer and
P. Prabhu, eds., Handbook of Human-Computer Interaction. Elsevier Science BV, 1997.

17. Hutchins, E. Cognition in the Wild. MIT Press, 1995.
18. Hutchins, E. Material anchors for conceptual blends. Journal of Pragmatics 37, 10 (2005),

1555-1577.
19. Jones, J.C. Design Methods. Wiley, 1992.
20. Jørgensen, A.H. On the psychology of prototyping. In R. Budde, ed., Approaches to

Prototyping. Springer Verlag, 1984, 278-289.
21. Kirsh, D. and Maglio, P. On distinguishing epistemic from pragmatic action. Cognitive

Science 18, 4 (1994), 513-549.
22. Lichter, H., Schneider-Hufschmidt, M., and Züllighoven, H. Prototyping in Industrial

Software Projects-Bridging the Gap Between Theory and Practice. IEEE Trans. Softw. Eng.
20, 11 (1994), 825-832.

23. Lim, Y., Stolterman, E., and Tenenberg, J. The anatomy of prototypes: Prototypes as
filters, prototypes as manifestations of design ideas. ACM Trans. Comput.-Hum. Interact. 15, 2
(2008), 1-27.

24. Loewy, R. Never Leave Well Enough Alone: The Personal Record of an Industrial Designer. Simon
and Schuster, 1951.

25. McConnell, S. Code Complete: A Practical Handbook of Software Construction, 2nd ed. Microsoft
Press, 2004.

26. Moggridge, B. Designing Interactions. The MIT Press, 2007.
27. Polanyi, M. The Tacit Dimension. Doubleday, 1966.
28. Pomberger, G., Bischofberger, W.R., Kolb, D., Pree, W., and Schlemm, H. Prototyping-

Oriented Software Development - Concepts and Tools. Structured Programming 12, 1 (1991),

19

43-60.
29. Rettig, M. Prototyping for tiny fingers. Communications of the ACM 37, 4 (1994), 21-27.
30. Riddle, W.E. Advancing the state of the art in software system prototyping. In R. Budde,

ed., Approaches to Prototyping. Springer Verlag, 1984, 19-26.
31. Rittel, H. and Webber, M. Dilemmas in a General Theory of Planning. Policy Sciences 4,

(1973), 155-169.
32. Schneider, K. Prototypes as assets, not toys: why and how to extract knowledge from

prototypes. Proceedings of the 18th international conference on Software engineering, IEEE
Computer Society (1996), 522-531.

33. Schon, D.A. The reflective practitioner. Basic Books, 1983.
34. Simon, H.A. The sciences of the artificial. MIT Press, 1996.
35. Star, S. and Griesemer, J. Institutional Ecology, `Translations' and Boundary Objects:

Amateurs and Professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39. Social
Studies of Science 19, 3 (1989), 420, 387.

36. Teague, W.D. Design This Day; the Technique of Order in the Machine Age. Harcourt, Brace and
Company, New York, 1940.

37. Winograd, T., ed. Bringing design to software. ACM, 1996.
38. Wong, Y.Y. Rough and ready prototypes: lessons from graphic design. Posters and short

talks of the 1992 SIGCHI conference on Human factors in computing systems, ACM (1992), 83-84.

